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Synopsis 

An analytical solution for diffusion with a homogeneous first-order reaction in the bulk and a 
heterogeneous reaction at  the reactor wall in a nowNewtonian laminar flow tubular reactor is pre- 
sented by using the Galerkin technique. The effect of reaction rate constants on dispersion is studied 
under isothermal conditions. It is found that, for the same mean velocity of the flow, the effective 
dispersion coefficient decreases with increase in the chemical reaction rate constants. 

INTRODUCTION 

Diffusion with homogeneous chemical reaction under the condition of laminar 
flow of Newtonian fluids in tubular reactors has been the subject of a number 
of papers.1-8 The analogous problems of non-Newtonian fluids, which are of 
interest in food processing, biological systems, and polymerization processes, 
have been discussed in Refs. 9-12. The problem of simultaneous homogeneous 
and heterogeneous reactions in tubular flow reactors is of importance in several 
areas.13 In the case of polymerization reactions, the initiation may often be 
catalyzed at  the tube wall. The problem is also of importance in the case of re- 
moval of solutes such as urea from the blood in a tubular haemodialyzer under 
conditions when significant solute concentration differences exist between red 
cells and plasma. In spite of the diversity of fields in which the problem may 
be of interest, surprisingly little work has been done in this specific area. Most 
theoretical studies concerning the simultaneous homogeneous and heterogeneous 
reactions in tubular reactors have been confined to Newtonian fluids.13-17 It  
is believed that practically no suitable model is available in the literature, which 
discusses the simultaneous homogeneous and heterogeneous reaction in the 
non-Newtonian laminar flow tubular reactor. 

In the present work, a simple closed form analytical solution within the 
framework of Taylor’s dispersion theory18 is obtained. The novelty about the 
work is that Galerkin t e c h n i q ~ e l ~ ~ ~ ~  has been used for the first time to obtain 
such a solution which enables one to obtain fairly accurate predictions for the 
reactor exit conversion without resorting to numerical techniques. The effect 
of reaction rate constants on the effective dispersion coefficient is also dis- 
cussed. 

* To whom all correspondence should be addressed. 
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DISTRIBUTED PARAMETER MODEL 

The two-dimensional diffusion equation for a laminar flow of a non-Newtonian 
fluid with a fully developed velocity profile is as follows21: 

where the dimensionless quantities are defined as 

r = EDm/R2, /3 = Ki ,  C = c/Co, Y = r/R ( 2 )  
The boundary conditions associated with eq. ( 1 )  are 

C = l  a t X = O  ( 3 )  
dC 
- = 0  a t Y = O  
dY 

dC 
- = A C  a t Y = 1  
dY 

(4) 

( 5 )  

where A is the heterogeneous reaction rate parameter. Equation ( 1 )  with the 
boundary conditions (3145)  was solved numerically by adopting a Crank-Ni- 
colson finite-difference scheme. Herein, we present a closed-form analytical 
solution for the above problem within the framework of Taylor's dispersion 
theory by applying the Galerkin method. 

GALERKIN'S APPROACH 

The Galerkin m e t h ~ d ' ~ > ~ O  has been used to solve eq. ( 1 )  with boundary con- 
ditions given by eqs. (3)-(5). In the present model we have assumed that dC/dX 
is independent of Y. This approximation is not valid for low values of X but 
is useful in practice and has been used by many w ~ r k e r s . ~ ~ ~ J ~ - ~ ~  Under the 
Galerkin method let C, be the mth-order solution for C, and 

Cm = + a f l ( Y )  + a2f2(Y) + + amfrn(Y) (6)  
where ao,al,. .,a, are constants to be determined. f i (Y)  (i = 1,2,. .,m) are the 
first m functions of an infinite sequence vi( Y ) )  (i = 1,2,. - -). Each of these 
functions is twice continuously differentiable on 0 d Y d 1 and satisfies the 
boundary conditions (4) and (5).  Further, any finite set of these functions is 
linearly independent on 0 d Y d 1. The constants ao,al,a2,- - -,a, are found out 
by solving the following system of equations: 

J1 L(C,)Y d Y  = 0 

and 

J 1  YL(C,) f i (Y)  d Y  = 0, i = 1,2,3- - -,m (7b) 

The above system of equations (7) is a system of linear algebraic equations be- 
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cause operator L is linear. This system is generated by the application of or- 
thogonality condition of L(C,) to each of f j (  Y) 0' = 1,2,3,- - .,m) over the cross 
section of the reactor tube. 

Thus once the sequence of functions (fi (Y)] (i = 1,2,- - -) is known, any order 
solution for C may be found out by calculating ao,al,- - -,a,, etc. from eq. (7). We 
choose the following sequence of the functions: 

i = 1,2,3,.-.. (9) 1 A n + l  2 
fi (y) = y2i 1 - - - - - y i ( n + l )  [ A + 2 i n + 3  n + 3  

These functions are algebraic polynomials which are easier to tackle mathema- 
tically. Substitution of these functions in eq. (7) gives a nonhomogeneous, 
nonsingular linear system of (rn + 1) algebraic equations. We have (m + 1) 
unknowns (ao,al,. - -,a,), which can be obtained by solving the system of equa- 
tions. In the present analysis we obtain a second-order solution by considering 
only the first two functions of eq. (9). Putting m = 2 in eq. (6) and solving eqs. 
(7), we get the second-order solution for C as 

CZ = a0 + a1Y2 1 - -- - - ( A + 2 n + 3  n + 3  
A n +  1 2Y2n+2 

+a2Y4 ( A + 4 n + 3  n + 3  

where 
A + n + 7  +- 4A) +- A ~ 4 ( 2 A + 4 n + 2 4  8A 

a 3n + 12 a 

42(l6730 + 3271A + 2732A2 + 4733A3) 
12 n + 1 (A + 2)41 

a1=-- r n + 3  F 
43 - - (8734 + 2 ~ 5 A  + v6A2 + 5r/7A3) 
a 

30 n + 1 (A + 4)(n + 6)(2n + 7141 
a2 = -- a 7 n + 3  F 

$1 = (n + 4)(n + 5)(n + 9)(3n + 11) 

42 = 10(n + 6)(n + 9)(2n + 7)(3n + 11) 

43 = (n  + 5)(n + 7) 

44 = 24(n + 4)(n + 7 ) ( n  + 9)(3n + 11) 

(14) 

(15) 

(16) 

(17) 
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TO,TI,-  * ,VH and $o,$I,* - ',$14 are polynomials of n and can be easily derived using 
Table I. 

The volumetric flow rate defined by 

2 a R 2 -  1 
Q = -  V, n + l  

C2Y[2 - (n  + 3)Yn+l]  dY 

and based upon the present solution is 

where 

+ 4'1 [16X0 + 2X1A + 2X2A2 + 10X3A3 
a(n + 4)(n  + 7) 

+ $2(n2 + 7n + 16)A4] (21)  I 
XO, X I ,  X p ,  and A3 are polynomials of n and are given in Table I. Calculation of 
any polynomial of n, say p m ,  appearing in the solution can be done as 

p m  = M(b0 + b1n + b2n2 + * - - + b@3) 

where M,bo,bl,- - '$8 are given in Table I for every polynomial. 

EFFECTIVE DISPERSION COEFFICIENT 

The effective dispersion coefficient for steady state laminar dispersion in power 
law fluids undergoing first-order homogeneous reaction in the bulk and heter- 
ogeneous reaction at the reactor wall is derived in the present analysis as 

(22) Pe = V,L/D = r / 2 P ( n , A , a )  

K, = DD,/V;d; = l/2P(n,A,a) 

where Pe is the Peclet number, which can be rewritten as 

(23) 
where K, is the measure of dispersion. 

The expression for the effective dispersion coefficient for the first-order ho- 
mogeneous reaction taking place in the laminar flow tubular reactor can be de- 
rived from the present analysis as a limiting case by putting A = 0 in 6q. (23).  
Thus the effective dispersion coefficient for this case becomes 

The expression for the effective dispersion coefficient in the case of heterogeneous 
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Fig. 1. Effect of reaction rate on dispersion: A = 0. 

reaction can be deduced from the present model by taking the limit a - a in 
eq. (23) as 

+ II/1A + II/2A2 + +3A3 + 11/4A4] (25) 
Similarly, the effective dispersion coefficient derived by Fan and Hwang2I for 
unsteady laminar dispersion in power law fluids under nonreacting conditions 
can be derived from the present analysis as a limiting case by putting A = 0 in 
eq. (25). Thus for this case 

K, = DDm/V,2d; = 1/8(n + 3)(n + 5) (26) 
It is interesting to mention that such a simple expression for the effective 

dispersion coefficient for the case of heterogeneous reaction in a laminar flow 
tubular reactor has not been reported in the literature. Thus, the present model 
is the most general case from which individual cases reported in the literaturel2.21 
for different situations can be derived as limiting cases. 

It can be seen from eq. (23) that, in a non-Newtonian laminar flow tubular 
reactor, the effective dispersion coefficient is a function of reaction rate constants 
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4- 
Fig. 2. Effect of reaction rate on dispersion for n = 0.5 ( -  - -) and n = 2.5 (-). 

(A ,a) and power law index ( n )  when first-order homogeneous chemical reaction 
is taking place in the bulk and heterogeneous reaction at the reactor wall. 

Figures 1 and 2 show the effect of homogeneous reaction rate parameter (a )  
on effective dispersion coefficient for different values of power law index (n )  and 
heterogeneous reaction rate parameter ( A ) .  It can be concluded from these 
figures that, for the same mean velocity of the flow, the effective dispersion 
coefficient decreases as the chemical reaction rate constants (A&) increase. The 
value of the effective dispersion coefficient for different values of power law index 
under the condition of very slow homogeneous reaction (i.e., a - a) using eq. 
(25) is also shown in the figures. I t  can be seen that the curves obtained by the 
present model approach these values for large values of a. A t  large values of CY 

about a fivefold reduction in the value of effective dispersion coefficients can 
be obtained for a given fluid (i.e., for a fixed value of n )  by increasing the heter- 
ogeneous reaction rate parameter (A) from 0.1 to 10. These figures also depict 
that the ef"2 Live dispersion coefficient decreases as the power law index ( n )  
increases fo; the same mean velocity. About a twofold reduction in the value 
of the effective dispersion coefficient can be obtained by increasing the value 
of n from 0.5 to 2.5 for fixed values of the reaction rate constants. 

SIMPLE SOLUTION 

The concept of axial dispersion has been widely used for predicting the effect 
of backmixing on the performance of chemical r e a c t 0 r s . 2 ~ ~ ~ ~  The concept has 
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Fig. 3. Percent error in conversion using the present model (-) and Fans and Hwang analysis 
( -  - -) with two-dimensional analysis, n = 2.5. 

also been applied to a homogeneous reaction under non-Newtonian laminar flow 
conditions.lOJ1 The parameter Pe (Peclet number) used in these studies was 
the Fan and Hwang dispersion coefficient for a nonreacting system. In the 
present study, the Peclet number was calculated using simple solution, eq. (25), 
as well as by the present model eq. (22), for different values of a, p ,  n,  and A .  
These values are given in Tables 11-V for different fluids. It is interesting to 
note that as the values of a and A increase agreement between predictions of the 
present model, eq. (22), and the simple solution, eq. (25), improves. It can be 
seen that, for any value of p and n, the two models nearly give the same value 
of Peclet num'ber, provided a > 0.1 and A > 5. This suggests that under these 
conditions the simple solution, eq. (25), may be used for cases where simultaneous 
homogeneous and heterogeneous reaction occurs. 

REACTOR PERFORMANCE 

The axial dispersion model solution with appropriate boundary conditions 
as discussed in Refs. 8,24-27 was used to calculate the bulk mean concentration 
for the parameter values of 0.001 d a d 0.3, 1 d p d 5,0.5 d n d 2.5, and 0 d A 
d 10. The predictions of the present model were compared with the numerical 
solution of the exact two-dimensional convective diffusion equation for the case 
of homogeneous reaction. The results are shown in Figure 3 and 4 for two dif- 
ferent values of the power law index. It can be seen that the present model 
predicts results with a maximum error of 2%. In the 1iterature,l0-l2 Fan and 
H w h g  analysis, which is for nonreacting systems, has been used to predict the 
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0 001 0 01 01 1 0  

Fig. 4. Percent error in conversion using the present model (-) and Fans and Hwang ( -  - - )  

oc- 

analysis with two-dimensional analysis, n = 0.5. 

reactor performance of a non-Newtonian laminar flow tubular reactor. The 
percent error in predicting the conversion by Fan and Hwang analysis is also 
shown in Figures 3 and 4. It can be seen from these figures that for fast reaction 
(i.e., a d 0.01) the Fan and Hwang analysis predicts highly inaccurate results. 

The present model predictions in case of homogeneous and heterogeneous 
reactions in a Newtonian laminar flow tubular reactor were compared with the 
reported ~a1ues.l~ The agreement between the present model and the numerical 
solution was very good. Some of the typical results for a non-Newtonian lami- 
nary flow tubular reactor are shown in Figures 5 and 6. For a given reaction tim 
(0) and heterogeneous reaction rate parameter ( A )  the exit concentration de- 
creases with increase in the value of homogeneous reaction rate parameter (a )  
for all values of power law index (n) ,  as shown in Figure 5. It can also be seen 
from this figure that as the power law index increases (i.e., the velocity profile 
becomes more flat) the exit concentration decreases for any given value of a. The 
maximum difference in the exit concentration for different fluids occurs at low 
values of a (i.e., for fast homogeneous reaction). A t  large values of a (i.e., for 
slow homogeneous reaction) the concentration profile seems to be same for dif- 
ferent fluids. Figure 6 shows the variation of exit concentration with a for a fixed 
value of the power law index at different values of 0 and A .  It  can be observed 
from the figure that, for a given value of 0, the concentration decreases with in- 
crease in the value of heterogeneous reaction rate parameter ( A ) .  However, as 
the value of 0 increases, the concentration decreases for fixed value of A .  The 
difference in concentrations Corresponding to two different values of heteroge- 
neous rate reaction parameter also decreases a t  large values of 0. 

4 
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Fig. 5. Variation of bulk mean concentration with homogeneous reaction rate for different values 

of power law index: A = 2.0 and /3 = 3.0. 
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Fig. 6. Variation of bulk mean concentration with homogeneous reaction rate for different values 
of A and /3, n = 0.5: ( -  - -) A = 10.0; (-1 A = 1.0. 
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CONCLUSIONS 

The present model predicts the reactor performance fairly well and saves a 
significant numerical effort required to solve each individual problem as a new 
case. Under certain conditions the use of simple solution has been demon- 
strated. 

NOMENCLATURE 

ai 
A 
bi 

co 
C 
C m  
dt 
D 
DlTl 
f i ( V  
k 
k' 
KC 

L 
n 
Pe 
Q 
r 
R 
t 
VX 
X 
Y 

C 

- 
- 

ff 

P 
T 

coefficients in eq. (6) 
dimensionless heterogeneous reaction rate parameter (= k 'R/D)  
polynomials of n 
point concentration 
initial concentration 
dimensionless concentration (= c/Co) 
mth-order solution for c 
reactor tube diameter 
effective diffusion coefficient 
molecular diffusion coefficient 
sequence of functions given by eq. (9) 
homogeneous reaction rate constant 
heterogeneous reaction rate constant 
measure of dispersion (= DD,/VZdP) 
length of the reactor 
power law index 
Peclet number (= T x L / D )  
volumetric flow rate 
Radial distance 
reactor radius 
mean time 
Average velocity 
dimensionless axial distance 
dimensionless radial distance 

dimensionless homogeneous reaction rate (= D J k R  2 )  

dimensionless reaction time (= k t )  
characteristic time (= a@). 

Greek Letters 
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