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Synopsis

An analytical solution for diffusion with a homogeneous first-order reaction in the bulk and a
heterogeneous reaction at the reactor wall in a non-Newtonian laminar flow tubular reactor is pre-
sented by using the Galerkin technique. The effect of reaction rate constants on dispersion is studied
under isothermal conditions. It is found that, for the same mean velocity of the flow, the effective
dispersion coefficient decreases with increase in the chemical reaction rate constants.

INTRODUCTION

Diffusion with homogeneous chemical reaction under the condition of laminar
flow of Newtonian fluids in tubular reactors has been the subject of a number
of papers.!-® The analogous problems of non-Newtonian fluids, which are of
interest in food processing, biological systems, and polymerization processes,
have been discussed in Refs. 9-12. The problem of simultaneous homogeneous
and heterogeneous reactions in tubular flow reactors is of importance in several
areas.}3 In the case of polymerization reactions, the initiation may often be
catalyzed at the tube wall. The problem is also of importance in the case of re-
moval of solutes such as urea from the blood in a tubular haemodialyzer under
conditions when significant solute concentration differences exist between red
cells and plasma. In spite of the diversity of fields in which the problem may
be of interest, surprisingly little work has been done in this specific area. Most
theoretical studies concerning the simultaneous homogeneous and heterogeneous
reactions in tubular reactors have been confined to Newtonian fluids.13-17 It
is believed that practically no suitable model is available in the literature, which
discusses the simultaneous homogeneous and heterogeneous reaction in the
non-Newtonian laminar flow tubular reactor.

In the present work, a simple closed form analytical solution within the
framework of Taylor’s dispersion theory!8 is obtained. The novelty about the
work is that Galerkin techniquel®20 has been used for the first time to obtain
such a solution which enables one to obtain fairly accurate predictions for the
reactor exit conversion without resorting to numerical techniques. The effect
of reaction rate constants on the effective dispersion coefficient is also dis-
cussed.
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DISTRIBUTED PARAMETER MODEL

The two-dimensional diffusion equation for a laminar flow of a non-Newtonian
fluid with a fully developed velocity profile is as follows21;

02C 10C 1 oC
—+==Z|-BC - 2~ (n+3)Yr+l] == =
’ (aY2 Y aY) PC-Gyp B +3yr =0 o
where the dimensionless quantities are defined as
7=tD,/R2, B=Kt, C=¢/Cy, Y=r/R (2)
The boundary conditions associated with eq. (1) are
C=1 atX=0 (3)
oC
—_— Y =
37 0 at 0 (4)
oC
_— = C =
% AC atY=1 (5)

where A is the heterogeneous reaction rate parameter. Equation (1) with the
boundary conditions (3)-(5) was solved numerically by adopting a Crank-Ni-
colson finite-difference scheme. Herein, we present a closed-form analytical
solution for the above problem within the framework of Taylor’s dispersion
theory by applying the Galerkin method.

GALERKIN’S APPROACH

The Galerkin method!%20 has been used to solve eq. (1) with boundary con-
ditions given by egs. (3)-(5). In the present model we have assumed that dC/dX
is independent of Y. This approximation is not valid for low values of X but
is useful in practice and has been used by many workers,47.10-13  Under the
Galerkin method let C,, be the mth-order solution for C, and

Cm = a0+ a1/1(Y) + aofa(Y) + - - - + anfn(Y) (6)

where a,a1, - -,a,, are constants to be determined. £;(Y) (i = 1,2,- - -,m) are the
first m functions of an infinite sequence {f;(Y)} (( = 1,2,---). Each of these
functions is twice continuously differentiable on 0 < Y < 1 and satisfies the
boundary conditions (4) and (5). Further, any finite set of these functions is
linearly independent on 0 < Y < 1. The constants ag,a1,as,- - -,a, are found out
by solving the following system of equations:

j;lL(Cm)YdY=O (Ta)
and
j; CYL(C,)f(Y)dY =0, i=123--m (7b)
(FCn 100 o 1 veny C
L(Cm)_T(aY2 Yy OY) 8C,, n+ D [2 - (n+3)Yr+]] oX (8)

The above system of equations (7) is a system of linear algebraic equations be-
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cause operator L is linear. This system is generated by the application of or-
thogonality condition of L(C},) to each of f;(Y) (j = 1,2,3,- - -,m) over the cross
section of the reactor tube.

Thus once the sequence of functions {f;(Y)} (i = 1,2,---) is known, any order
solution for C may be found out by calculating ag,a1,- - -,a,, etc. from eq. (7). We
choose the following sequence of the functions:

A nt+1 2
A+2in+3 n+3

These functions are algebraic polynomials which are easier to tackle mathema-
tically. Substitution of these functions in eq. (7) gives a nonhomogeneous,
nonsingular linear system of (m + 1) algebraic equations. We have (m + 1)
unknowns (a¢,a1, - +,a, ), which can be obtained by solving the system of equa-
tions. In the present analysis we obtain a second-order solution by considering
only the first two functions of eq. (9). Putting m = 2 in eq. (6) and solving egs.
(7), we get the second-order solution for C as

A n+1 2 Y"“)

filY)y=Y%|1—- Yi(r+D) I =1,28::- 9)

Cy=ap+a;Y2|1— -
27 G0T M ( A+2n+3 n+3

A n+1 2Y2n+2
+apY4{1- -~ 10
2 ( A+4n+3 n+3)( )
where
" =_n+1[ a; (A+n+7 ﬁ) as (2A+4n+24 §{1_) (11)
" Thn+sla+2\ n+5 o) A+4l 3m+12 a
12n+1(A+2
ai = 12n+1(A+2)¢ $o(16m0 + 32n1A + 2m2A2 + 413A3)
Tn+3 F

— 93 g0+ 2msA + med? + 51,49 25 (12)
a oX

=@n +1{(A+49)(n+6)2n+ T,

arn +3 F
oC
X [2n8 + Ang + A2nyo + 243ny4) 1% (13)
p1=n+4)n+5n+903n+11) (14)
¢2=10(n + 6)(n + 9)(2n + 7)(3n + 11) (15)
o3s=n+50n+17) (16)
ps=24n +4H)(n + H(n +9)(3n + 11) 17

F = 48¢1¢2[16(n + 3)no + Y1A + Y2A2 + Y343 + Y,A4]

+ %4 Vs + ¥6A + YrA2 + Y343 + oA 4]

+ % [Y10 + Y114 + Y1242 + Y1343 + Y1444 (18)
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No,M1," + M1 and Yo,¥1,+ + - ¥14 are polynomials of n and can be easily derived using
Table L
The volumetric flow rate defined by

Q= —%—R v, f CoY[2 = (n +3) Y +1] dY (19)

and based upon the present solution is
27R% _ oC
Q= Ve oX P(n,A,a) (20)
where
P(n,4,0) =+ {%’@1-‘*”—2 (8 + 1674 + 1542 + 27549)
Fln+5
291 160 + 204 + 20,42 + 100443

an+4)(n+17)
+ ¢2(n2 + Tn + 16)A4]} (21)

Aos A1, Ag, and A3 are polynomials of n and are given in Table I. Calculation of
any polynomial of n, say p,,, appearing in the solution can be done as

=M(bg+ bin+ byn2+.--+ bgnd)

where M,bo,b1,- - -,bg are given in Table I for every polynomial.

EFFECTIVE DISPERSION COEFFICIENT

The effective dispersion coefficient for steady state laminar dispersion in power
law fluids undergoing first-order homogeneous reaction in the bulk and heter-
ogeneous reaction at the reactor wall is derived in the present analysis as

Pe=V.L/D =71/2P(n,A,x) (22)
where Pe is the Peclet number, which can be rewritten as
K. = DD,,/Vid} = %P(n,A,x) (23)

where K. is the measure of dispersion.

The expression for the effective dispersion coefficient for the first-order ho-
mogeneous reaction taking place in the laminar flow tubular reactor can be de-
rived from the present analysis as a limiting case by putting A = 0 in éq. (23).
Thus the effective dispersion coefficient for this case becomes

DD,
KC = V2d2 = 1/2P(n10ya)
%t
= 394, [30270 | ] / [768¢1¢2(n + 3)mo
n+5 aln+ 4)(n +7)
4 PaVa [ ¢3158 (24)
« o

The expression for the effective dispersion coefficient in the case of heterogeneous
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Fig. 1. Effect of reaction rate on dispersion: A = Q.

reaction can be deduced from the present model by taking the limit & — « in
eq. (23) as
DD,
Vid;

Kc = = 1/2P(nyA’°°)

1
" 2n +5) [4n0 + 8mA + 0.51542 + n343]/[16(n + 3)no

+ 1A + YA + Y343 + Y,AY (25)

Similarly, the effective dispersion coefficient derived by Fan and Hwang?! for
unsteady laminar dispersion in power law fluids under nonreacting conditions
can be derived from the present analysis as a limiting case by putting A = 0 in
eq. (25). Thus for this case

K. =DD,,/V%d? = 1/8(n + 3)(n + 5) (26)

It is interesting to mention that such a simple expression for the effective
dispersion coefficient for the case of heterogeneous reaction in a laminar flow
tubular reactor has not been reported in the literature. Thus, the present model
is the most general case from which individual cases reported in the literaturel2:21
for different situations can be derived as limiting cases.

It can be seen from eq. (23) that, in a non-Newtonian laminar flow tubular
reactor, the effective dispersion coeffictent is a function of reaction rate constants
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Fig. 2. Effect of reaction rate on dispersion for n = 0.5 (---) and n = 2.5 (—).

(A,«) and power law index (n) when first-order homogeneous chemical reaction
is taking place in the bulk and heterogeneous reaction at the reactor wall.

Figures 1 and 2 show the effect of homogeneous reaction rate parameter («)
on effective dispersion coefficient for different values of power law index (n) and
heterogeneous reaction rate parameter (A). It can be concluded from these
figures that, for the same mean velocity of the flow, the effective dispersion
coefficient decreases as the chemical reaction rate constants (A4,k) increase. The
value of the effective dispersion coefficient for different values of power law index
under the condition of very slow homogeneous reaction (i.e., « — «) using eq.
(25) is also shown in the figures. It can be seen that the curves obtained by the
present model approach these values for large values of «. At large values of o
about a fivefold reduction in the value of effective dispersion coefficients can
be obtained for a given fluid (i.e., for a fixed value of n) by increasing the heter-
ogeneous reaction rate parameter (A) from 0.1 to 10. These figures also depict
that the ef"s tive dispersion coefficient decreases as the power law index (n)
increases for the same mean velocity. About a twofold reduction in the value
of the effective dispersion coefficient can be obtained by increasing the value
of n from 0.5 to 2.5 for fixed values of the reaction rate constants.

SIMPLE SOLUTION

The concept of axial dispersion has been widely used for predicting the effect
of backmixing on the performance of chemical reactors.222® The concept has
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Fig. 3. Percent error in conversion using the present model (—) and Fans and Hwang analysis
(---) with two-dimensional analysis, n = 2.5.

also been applied to a homogeneous reaction under non-Newtonian laminar flow
conditions.1%:11 The parameter Pe (Peclet number) used in these studies was
the Fan and Hwang dispersion coefficient for a nonreacting system. In the
present study, the Peclet number was calculated using simple solution, eq. (25),
as well as by the present model eq. (22), for different values of «, 3, n, and A.
These values are given in Tables 11-V for different fluids. It is interesting to
note that as the values of @ and A increase agreement between predictions of the
present model, eq. (22), and the simple solution, eq. (25), improves. It can be
seen that, for any value of 8 and n, the two models nearly give the same value
of Peclet number, provided o > 0.1 and A > 5. This suggests that under these
conditions the simple solution, eq. (25), may be used for cases where simultaneous
homogeneous and heterogeneous reaction occurs.

REACTOR PERFORMANCE

The axial dispersion model solution with appropriate boundary conditions
as discussed in Refs. 8, 2427 was used to calculate the bulk mean concentration
for the parameter values of 0.001 € ¢ £0.3,1<6<5,05<n<25,and0< A
< 10. The predictions of the present model were compared with the numerical
solution of the exact two-dimensional convective diffusion equation for the case
of homogeneous reaction. The results are shown in Figure 3 and 4 for two dif-
ferent values of the power law index. It can be seen that the present model
predicts results with a maximum error of 2%. In the literature,!®-12 Fan and
Hwang analysis, which is for nonreacting systems, has been used to predict the
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reactor performance of 4 non-Newtonian laminar flow tubular reactor. The
percent error in predicting the conversion by Fan and Hwang analysis is also
shown in Figures 3 and 4. It can be seen from these figures that for fast reaction
(i.e., @ £0.01) the Fan and Hwang analysis predicts highly inaccurate results.

The present model predictions in case of homogeneous and heterogeneous
reactions in a Newtonian laminar flow tubular reactor were compared with the
reported values.'> The agreement between the present model and the numerical
solution was very good. Some of the typical results for a non-Newtonian lami-
nary flow tubular reactor are shown in Figures 5 and 6. For a given reaction tim
(B) and heterogeneous reaction rate parameter (A) the exit concentration de-
creases with increase in the value of homogeneous reaction rate parameter («)
for all values of power law index (n), as shown in Figure 5. It can also be seen
from this figure that as the power law index increases (i.e., the velocity profile
becomes more flat) the exit concentration decreases for any given value of «. The
maximum difference in the exit concentration for different fluids occurs at low
values of « (i.e., for fast homogeneous reaction). At large values of « (i.e., for
slow homogeneous reaction) the concentration profile seems to be same for dif-
ferent fluids. Figure 6 shows the variation of exit concentration with « for a fixed
value of the power law index at different values of 3 and A. It can be observed
from the figure that, for a given value of 3, the concentration decreases with in-
crease in the value of heterogeneous reaction rate parameter (4). However, as
the value of B increases, the concentration decreases for fixed value of A. The
difference in concentrations corresponding to two different values of heteroge-
neous rate reaction parameter also decreases at large values of 3.
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CONCLUSIONS

The present model predicts the reactor performance fairly well and saves a
significant numerical effort required to solve each individual problem as a new
case. Under certain conditions the use of simple solution has been demon-
strated.

NOMENCLATURE

a; coefficients in eq. (6)

A dimensionless heterogeneous reaction rate parameter (= k'R/D)
b; polynomials of n

c point concentration

Co initial concentration

C dimensionless concentration (= ¢/Co)
Cn mth-order solution for ¢

d; reactor tube diameter

D effective diffusion coefficient

D molecular diffusion coefficient

fi(Y)  sequence of functions given by eq. (9)
k homogeneous reaction rate constant
R’ heterogeneous reaction rate constant
K. measure of dispersion (= DD,,/V2d?)
length of the reactor

power law index

Peclet number (= V,L/D)
volumetric flow rate

Radial distance

reactor radius

mean time

Average velocity

dimensionless axial distance
dimensionless radial distance

[

®

~xX<TlmTogs

Greek Letters
dimensionless homogeneous reaction rate (= D,,/kR?)
dimensionless reaction time (= kt)
characteristic time (= aff).

N ™R
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